

AIR SPRINGS

MAS, BZ, MBZ, RB-SH, GRB

LEVEL CONTROL SYSTEMS

MC, LC, EC, μC

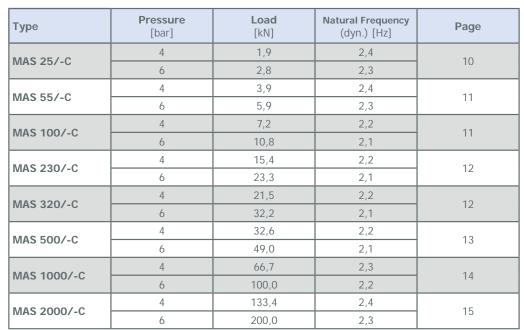
BZ 34

BZ 46

BZ 52

BZ 85

BZ 120 MB


BZ 210 DS

BZ 320 DS

BZ 570 DS

BZ 840 DS

DBZ 1370

3.4

4,4

3,0

4,6

6,1

3,7

5,7

7,7

5,3

8,3

10,9

7,5

11,9

15,7

14,2

21,8

29,0

20,1

31,6

42,2

38,8

58,7

78,1

52,1

79,0

107,6

90,5

137,6

186,1

3.3

3,2

3,3

3,3

3,2

2,9

2,8

2,7

2,8

2,6

2,6

2,6

2,6

2,6

2.4

2,3

2,3

2,5

2,4

2,3

2,2

2,2

2,1

2,2

2,2

2,2

1,6

1,5

1,5

16

17

18

19

20

21

22

23

24

25

4

6

8

4

6

8

4

6

8 4

6

8

4

6

8

4

6

8

4

6

8

4

6

8

4

6 8

4

6 8

Pressure [bar]	Load [kN]	Natural Frequency (dyn.) [Hz]	Page	Туре
-	0,65	3-5	26-27	MBZ 6,5
-	1,8	3-5	26-27	MBZ 18
-	2,8	3-5	26-27	MBZ 28
-	6	3-5	28	MBZ 60
-	13	3-5	28	MBZ 130
-	26	3-5	28-29	MBZ 260
-	55	3-5	28-29	MBZ 550
-	100	3-5	28-29	MBZ 1000

TYPE MBZ

Pressure [bar]	Load [kN]	Natural Frequency (dyn.) [Hz]	Page	Туре	
4	14	1,5			
6	22	1,5	30	RB 220 SH	
8	29,7	1,5			
4	26,5	1,2			
6	40,5	1,2	31	RB 410 SH	
8	54,2	1,2			

				I	
Pressure [bar]	Load [kN]	Natural Frequency (dyn.) [Hz]	Page	Туре	
4	52	1,7		GRB 780	
6	78	1,6	32-33	GRB 780 MD	
8	104	1,5		GRB 780 VD	
4	83	1,5		GRB 1240	
6	124	1,4	34-35	GRB 1240 MD	
8	165	1,3		GRB 1240 VD	
4	122	1,4	36-37	GRB 1820	
6	182	1,3		GRB 1820 MD	
8	244	1,3		GRB 1820 VD	
4	165	1,5		GRB 2480	
6	248	1,4	38-39	GRB 2480 MD	
8	329	1,4		GRB 2480 VD	
4	165	0,89			
6	248	0,84	40-41	GRB 2480-1200 ZV GRB 2480-1200 ZV-AV	
8	329	0,81		OKB 2400-1200 2V-AV	
4	165	0,86			
6	248	0,77	42	GRB 2480-840	
8	329	0,76			

2002 > Construction of a test laboratory with servo-hydraulic test benches for verifying our own products

2005 > New innovative products are introduced to the market; MAS air springs and *MOCOKIT**, Extension of the machine park; column milling machine with 3 500 x 2 000 mm working surface

1997 > Dipl.-Ing. Wolfgang Peters becomes director of **CFM-Schiller**. Expansion of product range; test bench components for servo-hydraulic test benches added

> 1994 > Production expanded; new production hall and two assembly halls

1978 > Dipl.-Ing. Hubertus Schiller establishes CFM for the assembly and design of vibration isolation and seismic masses with air springs

1998 > Commissioning of a portal milling machine

1987 > The first production

hall with administrative

building is developed in

Roetgen

2000 > Introduction of 3D-CAD system inventor

2003 > Company expansion, including new assembly halls and administrative wing

2006 > Establishment of subsidiary company CFM-ITBONA, USA

1999 > Introduction of Finite-Element method

NASTRAN, WINDOWS based

2009 > Production optimization; new 9-axle welding robot

> 2011 > Expansion of machine park; 5-axle CNC milling machine including CAD-CAM technology

2008 > Expansion of the machine park; CNC milling machine with 6 000 x 2 500 mm working surface. Establishment of CFM Schiller, France

2010 > Production optimization; new 7-axle welding robot

2012 > Expansion of CFM Schiller Engineering PVT India, Pune, India

2013 > Production optimization; second 3-axle CNC milling machine including CAD-CAM technology. Expansion of the company; new 1 100m² workshop with paint shop and an additional administration facility

2014 > Expansion of machine park; new 5-axle CNC travelling column milling machine with 10 000 x 3 000 mm working surface

> 2015 > Expansion of machine park; new 5-axle CNC travelling column milling machine with 6 000 x 2 000 mm working surface

35 YEAR OLD CFM SCHILLER

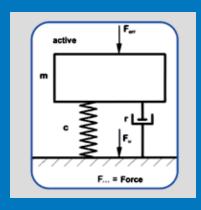
Competency in development and production

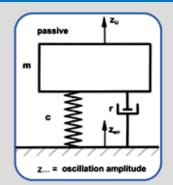
CFM Schiller GmbH looks back on more than 35 years' experience in the areas of vibration isolation systems and vibration foundations.

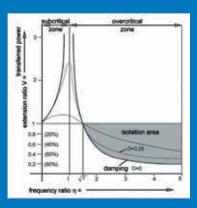
Since the beginnings, our core business has been to create solutions for problems concerning the safety of people, buildings and plants by employing vibration-isolated bearings.

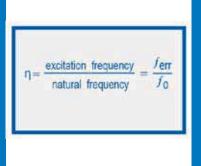
The increasing productive efficiency of machines and test rigs, chiefly in the automotive industry, is leading to a constant increase of disturbances emitted into the environment.

This particularly involves analyses on the operational stability of vehicles and their components as well as flexural fatigue tests on steel and aluminium structures.


We offer our customers high-tech, reliable products of the highest quality! The **CFM products** are manufactured on our premises using state-of-the-art manufacturing technology. Long-term partnerships with carefully selected partners ensure a consistently high standard of quality. Our aim is to entertain long-lasting business relationships based on cooperation with satisfied customers. Our employees guarantee our success.


Cooperation is marked by mutual support, open communication and a flat hierarchy.





THE PRINCIPLE OF VIBRATION ISOLATION

Active vibration isolation:

In active vibration isolation, the vibrations emitted from machines or test systems are reduced to such extent that the adjacent parts of the building, machines and those people working on them are not harmed or affected in any way.

Passive vibration isolation

In passive vibration isolation, the vibration isolation protects sensitive machines or measuring equipment such as precision tool machinery, measuring machines and scanning electron microscopes and laser measuring equipment from vibrations which impact the building from the outside, e.g. from underground.

Periodic vibration isolation

In most cases machines and test rigs emit forced, damped vibrations. An important criterion for the effectiveness of the vibration isolation is the **frequency ratio** (η). The greater η is, the better the isolation effect. The transfer function pictured here shows that vibration isolation only exists when the frequency ratio is greater than $\sqrt{2}$. Effective vibration isolation is achieved at a frequency ratio of 3-4.

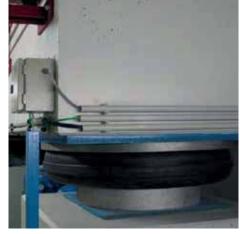
AIR SPRING SYSTEMS

CFM Air Spring Systems are being used for elastic bearing in low frequency mode with frequencies of 0.6Hz to 2.5Hz. Hence the air spring is applied at the lower edge of all physical solutions. An air spring system for vibration isolation of machines and/or test systems basically consists of the following main components:

1. Seismic mass

Additional inertial mass of the swinging system. In case of not sufficient available mass of the test system itself an additional mass (i.e. concrete with clamping plate) is added in the function of a base plate.

2. Air spring


The air spring de-couples the machine and/or test system from the laboratory environment. The air spring is precisely selected according to load capacity, natural frequency, amplitude limits and further technical conditions.

3. Damper

The damper is the component to ensure that the vibration amplitude is limited within a permissible level. All dampers are integrated within the air springs and do not require additional space. The air spring type MAS offer a wide adjustment range by means of an air regulator. The use of air springs with viscous damping enables us to accommodate customer requirements.

Additional volume

Through the enlarged volume of an air spring it is possible to lower down the natural frequency until 0.6Hz. Except in the case of the air spring type GRB 2480-1200 ZV, the additional volume is not integrated into the air spring itself. Due to the additional volume the air spring system has two switchable natural frequencies (with and without additional volume). The optimized arrangement of the main components guarantees a vibration isolation of highest efficiency.

Air Spring with additional volume

Air Spring with additional volume

WE 300

MC 300-S

LC 300

LEVEL CONTROL SYSTEMS

When using air springs in a vibration isolation system, a level control unit is required to adjust the zero level of the machine or test rig. Furthermore, it is necessary to mount a maintenance unit on the inlet side in order to adjust the inlet pressure, separate condensation water and decouple the system from the air pressure supply when required.

WE 300

This reasonably priced supply unit comprises an inlet pressure control valve and an air treatment unit, as well as ball valves to deflate the system. The WE 300 is for exclusive use with the air springs from our MAS range.

MC 300-S

This supply unit comprises an inlet pressure valve and a water separator. The current pressure in the individual systems as well as the inlet pressure is displayed on a pressure gauge. The plant can be lowered by means of ball valves. The regulating valve for 3-point level control is included in the scope of supply.

LC 300/302

The resting position of the test rig is indicated by means of color changing LEDs on the level control unit LC 300. A key switch is used to raise or lower the seismic mass. The regulating valves for the 3-point level control are included in the scope of supply. An additional key switch available on the LC 302 enables the increase of volume to change the air spring system's natural frequency. Floating contacts allows external equipment condition monitoring.

EC 303

The electronic level control system EC 303 serves as full automatic as high precision level control unit for **CFM air spring** systems.

The EC 303 level control unit can be used with all ranges of **CFM air springs.** The EC 303 comprises of three of electronic control circuits, three of valve units incl. digital pressure sensors with 7 segment display which are integrated into a ridged industrial case.

The front plate of the main EC 303 control box is provided with pressure gauges for input and system pressure as well as a HMI Panel to operate the Level control unit.

Level control systems

The following functions are integrated into the standard system:

- Height adjustability of each control loop
- Monitoring of height and pressure of each control loop
- switching of resonance frequency
- quick lifting an lowering of the seismic mass
- full quick air evacuation
- preset up of 3 different levels

Depending on the choosed sensors the level control system has a precision of \pm 0,05 mm.

As option it is possible to integrate an active monitoring function of the moving amplitues of the seismic mass and automatic switching of the resonance frequency depending.

μC 300

The μC 300 provides an electronic level control with active damping. With the μC 300 the build up of the system can be avoided and the decay time can be minimized.

The level of the controlled item is detected by contact free position sensors. The controller works with high-dynamic proportional valves. The μC 300 analyzes seven sensor signals, three ultrasonic position sensors and four pressure sensors. The Air stream to the air springs is controlled by three high dynamic proportional valves. Each air spring group is controlled by one valve.

The advantage over a passive mechanical system is the possibility to optimize the parameters to the characteristic of the system.

The controller is realized with a FPGA with a40MHz clock rate.

The software to parametrize the controller is connected via Ethernet. There all relevant parameters can be visualized and adjusted.

A visualization can although be done on a mobile device. With this feature a smart and quick check of the status of the vibration isolation system is possible.

Measuring method

We measure vibrations which occur on buildings or machines using state-ofthe-art measuring equipment. The acceleration that occurs is measured with highly sensitive sensors.

The results of these measurements form the dimensioning of the required vibration isolation components. This process is carried out according to DIN 4150, which defines this type of measurement and evaluation in buildings.

Measuring vibration accoloration / vibration speed is indispensable, particularly processed in the components of the process of the process of the components of the process of the process

Measuring vibration acceleration / vibration speed is indispensable, particularly when designing the vibration isolation of high-precision and highly sensitive plants and equipment.

Air springs type MAS

At this product an air volume is enclosed via a special rubber membrane. The isolated mass is supported through this membrane by the internal air pressure and the internal load plate. The equilibrium between the vertical force of the isolated mass and the resulting force out of the internal air pressure is given due to the integrated controlling valve. An additional safety valve avoids any kind of overload to the membrane spring.

Fundamental advantages of this air spring concept are the higher vertical stiffness as well as the adjustable damping function.

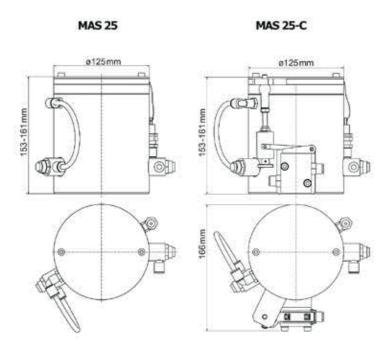
Sub-versions:

MAS ...-C: leveling valve mounted directly at air spring body; MAS ...-CPC: additional to leveling valve mounted roller type limit switch.

Note:

Optional manufacturing of the threads in the top cover and housing according to agreement with customer.

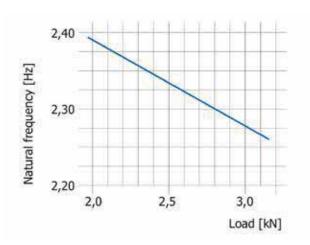
Application:


Passive vibration isolation:

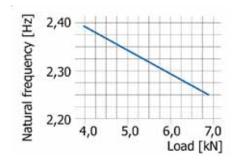
- metrological instruments
- electron microscopes
- equipment in laser technology
- measuring buildups

Active vibration isolation:

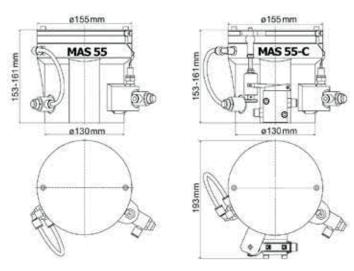
- machines *
- motor test rig *
- gear test rig *
- * = with low dynamic


MAS 25/MAS 25-C

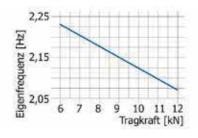
Weight: MAS 25 5 kg MAS 25-C 5,5 kg

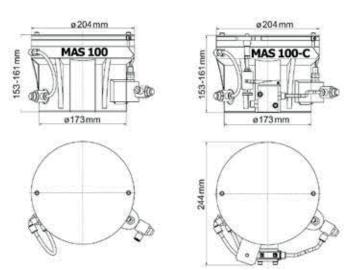

Dynamic spring data for vibration isolation at 157 mm operating height and $f_{\rm err} = 1 \rm Hz$

		vertical		
Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency (dyn.) [Hz]	Damping ratio
4	1,9	44	2,4	0,05 - 0,1
6	2,8	61	2,3	0,05 - 0,1



Weight: MAS 55 4,5 kg MAS 55-C 5,0 kg

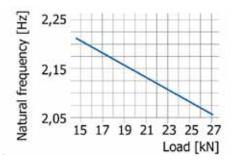

MAS 55 / MAS 55-C


Dynamic spring data for vibration isolation at 157 mm operating height and $f_{err} = 1Hz$

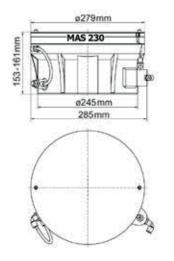
			vertical		
	Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency (dyn.) [Hz]	Damping ratio
	4	3,9	89	2,4	0,05 - 0,1
Г	6	5,9	124	2,3	0,05 - 0,1

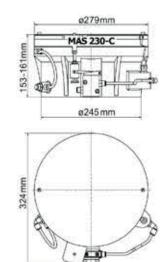
Weight: MAS 100 7,6 kg MAS 100-C 8,1 kg

MAS 100 / MAS 100-C


Dynamic spring data for vibration isolation at 157 mm operating height and $f_{\rm err} = 1 {\rm Hz}$

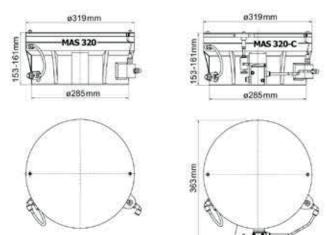
		vertical		
Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency (dyn.) [Hz]	Damping ratio
4	7,2	140	2,2	0,1 - 0,2
6	10,8	200	2,1	0,1 - 0,2





Weight: MAS 230 15,5 kg MAS 230-C 16,0 kg

MAS 230 / MAS 230-C

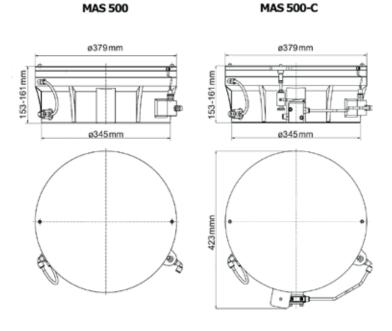

Dynamic spring data for vibration isolation at 157 mm operating height and $f_{\rm err}$ = 1Hz

		vertical		
Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency (dyn.) [Hz]	Damping ratio
4	15,4	290	2,2	0,1 - 0,2
6	23,2	400	2,1	0,1 - 0,2

Weight: MAS 320 17,2 kg MAS 320-C 17,9 kg

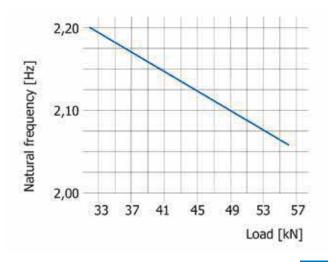
MAS 320 / MAS 320-C

Dynamic spring data for vibration isolation at 157 mm operating height and $\rm f_{\rm err}=1Hz$


		vertical		
Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency (dyn.) [Hz]	Damping ratio
4	21,5	410	2,2	0,1 - 0,2
6	32,2	550	2,1	0,1 - 0,2

Membrane air spring

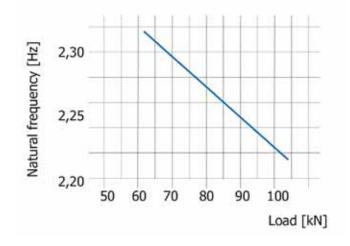
MAS 500 / MAS 500-C



Weight: MAS 500 23,5 kg MAS 500-C 24,2 kg

Dynamic spring data for vibration isolation at 157 mm operating height and $f_{\rm err} = 1 \text{Hz}$

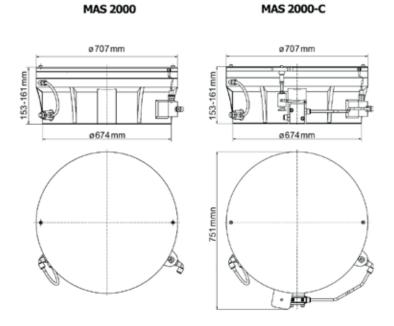

		vertical			
Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency (dyn.) [Hz]	Damping ratio	
4	32,6	580	2,2	0,1 - 0,2	
6	49,0	870	2,1	0,1 - 0,2	


MAS 1000 / MAS 1000-C

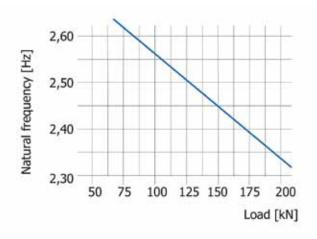
Weight: MAS 1000 44,5 kg MAS 1000-C 44,8 kg

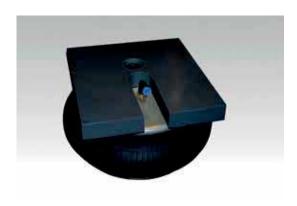
Dynamic spring data for vibration isolation at 157 mm operating height and $\rm f_{err} = 1 Hz$

		vertical		
Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency (dyn.) [Hz]	Damping ratio
4	66,7	1404	2,3	0,1 - 0,2
6	100.0	1965	2.2	0.1 - 0.2



Membrane air spring



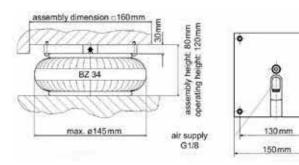

Weight: MAS 2000 77 kg MAS 2000-C 77,3 kg

Dynamic spring data for vibration isolation at 157 mm operating height and $f_{err} = 1$ Hz

		vertical		
Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency (dyn.) [Hz]	Damping ratio
4	133,4	3111	2,4	0,1 - 0,2
6	200,0	4356	2,3	0,1 - 0,2

Air springs type BZ

Below an adapter plate between the top and lower steel plate a rubber bellow is crimped in order to create a hermetically sealed air volume.

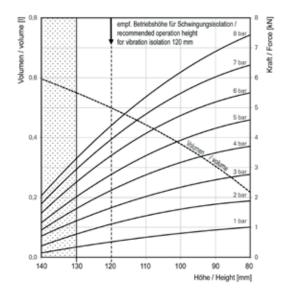

Hence the rubber bellow has very good dynamic characteristics as well as good chemical resistance.

The mounting threads are positioned in the top and lower plates; the air connection hose thread is positioned in the top plate. The sub types BZ ... DS/MB are equipped with bump stops.

Application: active vibration isolation:

- midding dynamic
- mounting plates
- engine test rig
- actuation test rig

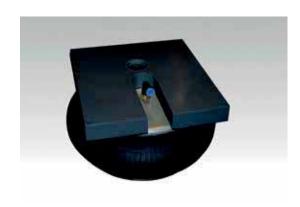
BZ 34

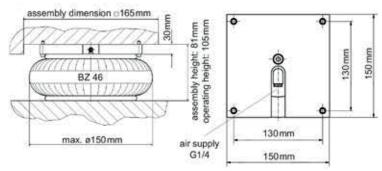

Weight: 1,6 kg
Restoring force for min. height: ≤ 120 N

Dynamic spring data for vibration isolation

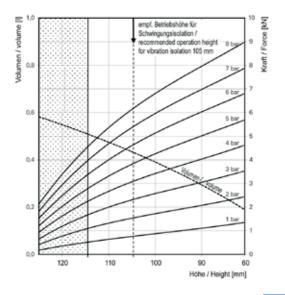
operating height incl. adapter plate = 120 mm and f_{err} = 1 Hz

Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency [Hz]
4	2,3	99	3,3
6	3,4	148	3,3
8	4,4	182	3,2


Height [mm]	3 [bar]	4 [bar]	5 [bar]	6 [bar]	7 [bar]	8 [bar]
130	1,2	1,6	2,0	2,5	3,0	3,4
110	2,1	2,8	3,5	4,2	4,9	5,3
90	2,6	3,5	4,3	5,2	6,1	6,9



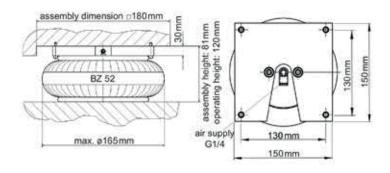
Bellows cylinder


Weight: 1,9 kg
Restoring force for min. height: ≤ 250 N

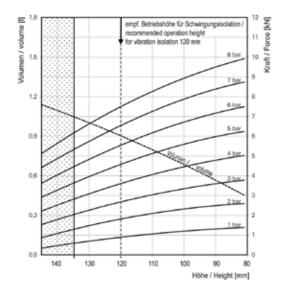
Dynamic spring data for vibration isolation

operating height incl. adapter plate = 105 mm and f_{err} = 1 Hz

Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency [Hz]
4	3,0	191	3,8
6	4,6	267	3,7
8	6,1	334	3,6


Height [mm]	3 [bar]	4 [bar]	5 [bar]	6 [bar]	7 [bar]	8 [bar]
110	2,0	2,7	3,3	4,0	4,7	5,4
100	2,6	3,4	4,3	5,1	6,0	6,8
90	3,1	4,0	5,0	6,0	7,0	8,0

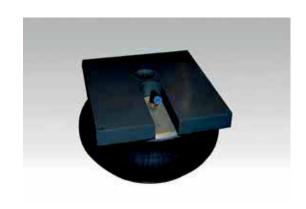
BZ 52

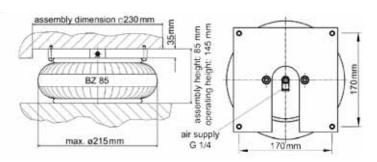

Weight: 1,9 kg
Restoring force for min. height: ≤ 200 N

Dynamic spring data for vibration isolation

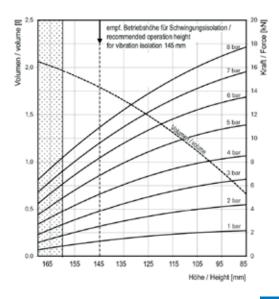
operating height incl. adapter plate = 120 mm and $f_{\rm err}$ = 1 Hz

Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency [Hz]
4	3,7	127	2,9
6	5,7	177	2,8
8	7,7	232,5	2,7

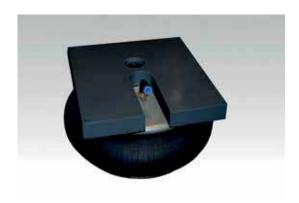

Height [mm]	3 [bar]	4 [bar]	5 [bar]	6 [bar]	7 [bar]	8 [bar]
130	2,2	3,1	4,0	4,8	5,7	6,6
110	3,1	4,1	5,1	6,2	7,3	8,3
90	3,6	4,8	6,0	7,2	8,4	9,5



Bellows cylinder


Weight: 2,9 kg
Restoring force for min. height: ≤ 200 N

Dynamic spring data for vibration isolation


operating height incl. adapter plate = 145 mm and f_{err} = 1 Hz

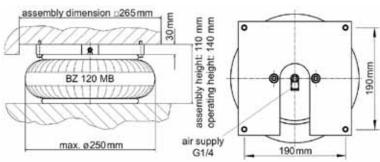
Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency [Hz]
4	5,3	162	2,8
6	8,3	223	2,6
8	10,9	284	2,6

Height [mm]	3 [bar]	4 [bar]	5 [bar]	6 [bar]	7 [bar]	8 [bar]
155	3,1	4,3	5,6	6,9	8,0	9,2
125	5,0	6,8	8,9	10,8	12,2	13,8
95	6,3	8,2	10,7	13,0	15,0	17,0

Air springs type BZ 120 MB

Below an adapter plate between the top and lower steel plate a rubber bellow is crimped in order to create a hermetically sealed air volume.

Hence the rubber bellow has very good dynamic characteristics as well as good chemical resistance.

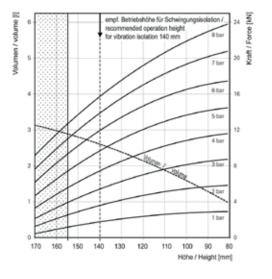

The mounting threads are positioned in the top and lower plates; the air connection hose thread is positioned in the top plate.

The types BZ 120 MB are equipped with internal bump stops.

Application: active vibration isolation:

- · midding dynamic
- mounting plates
- engine test rig
- actuation test rig

BZ 120 MB

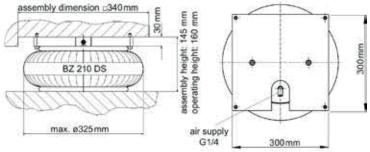

Weight: 3,8 kg
Restoring force for min. height: ≤ 200 N

Dynamic spring data for vibration isolation

operating height incl. adapter plate = 140 mm and f_{err} = 1 Hz

Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency [Hz]
4	7,5	205	2,6
6	11,9	315	2,6
8	15,7	425	2,6

Height [mm]	3 [bar]	4 [bar]	5 [bar]	6 [bar]	7 [bar]	8 [bar]
150	4,5	6,2	8,2	10,4	12,1	13,8
120	7,0	9,4	12,1	14,6	17,0	19,2
90	8,5	11,3	14,2	17,1	20,1	23,0



Bellows cylinder

BZ 210 DS

Restoring force for min. height:

Weight:

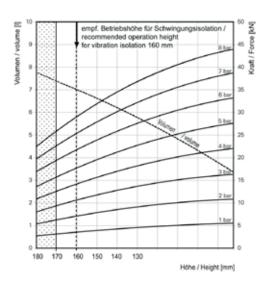
6,6 kg ≤ **300 N**

Air springs type BZ 210 DS

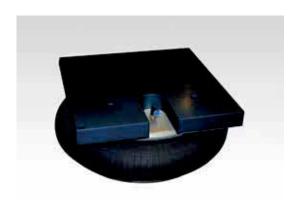
Below an adapter plate between the top and lower steel plate a rubber bellow is crimped in order to create a hermetically sealed air volume. Hence the rubber bellow has very good dynamic characteristics as well as good chemical resistance. The mounting threads are positioned in the top and lower plates; the air connection hose thread is positioned in the top plate. The types BZ 210 DS are equipped with internal bump stops.

Application:

active vibration isolation:


- midding dynamic
- mounting plates
- engine test rig
- actuation test rig

Dynamic spring data for vibration isolation


operating height incl. adapter plate = 160 mm and f_{err} = 1 Hz

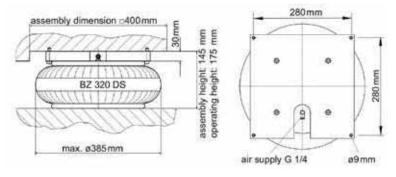
Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency [Hz]
4	14,2	329	2,4
6	21,8	458	2,3
8	29,0	587	2,3

Height [mm]	3 [bar]	4 [bar]	5 [bar]	6 [bar]	7 [bar]	8 [bar]
160	10,7	14,2	17,8	21,8	25,4	29,0
150	11,9	15,7	19,6	23,8	27,8	31,8
140	12,7	16,9	21,1	25,8	30,1	34,4

Air springs type BZ 320 DS

Below an adapter plate between the top and lower steel plate a rubber bellow is crimped in order to create a hermetically sealed air volume.

Hence the rubber bellow has very good dynamic characteristics as well as good chemical resistance.

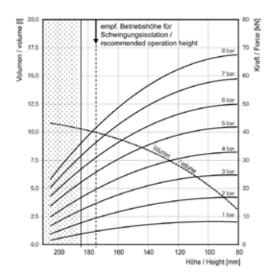

The mounting threads are positioned in the top and lower plates; the air connection hose thread is positioned in the top plate.

The types BZ 320 DS are equipped with internal bump stops.

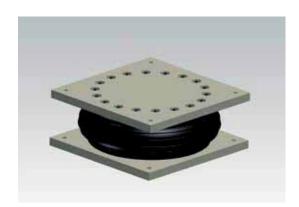
Application: active vibration isolation:

- midding dynamic
- mounting plates
- engine test rig
- actuation test rig

BZ 320 DS


Weight: 9,9 kg
Restoring force for min. height: ≤ 300 N

Dynamic spring data for vibration isolation

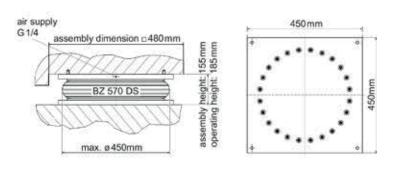

operating height incl. adapter plate = 175 mm and f_{err} = 1 Hz

Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency [Hz]
4	20,1	500	2,5
6	31,6	710	2,4
8	42,2	915	2,3

Height [mm]	3 [bar]	4 [bar]	5 [bar]	6 [bar]	7 [bar]	8 [bar]
180	14,3	19,0	25,0	30,0	35,0	40,0
160	17,8	23,7	30,5	36,3	42,7	49,1
140	20,7	27,4	34,8	41,7	49,0	56,0

Air springs type BZ 570 DS

Between the top and lower plate a rubber bellow is crimped in order to create a hermetically sealed air volume. Hence the rubber bellow has very good dynamic characteristics as well as good chemical resistance. The mounting threads are positioned in the top and lower plates; the air connection hose thread is positioned in the top plate.

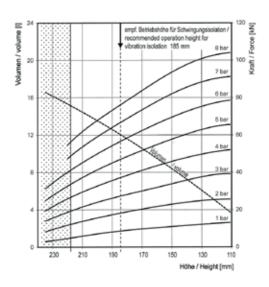

The types BZ 570 DS are equipped with internal bump stops.

Application:

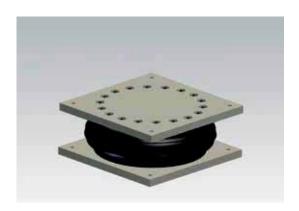
active vibration isolation:

- midding dynamic
- mounting plates
- engine test rig
- actuation test rig

BZ 570 DS


Weight: 105 kg
Restoring force for min. height: ≤ 100 N

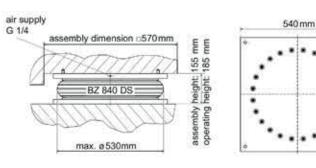
Dynamic spring data for vibration isolation


operating height incl. adapter plate = 185 mm and f_{err} = 1 Hz

Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency [Hz]
4	38,8	767	2,2
6	58,7	1100	2,2
8	78,1	1453	2,1

leight [mm]	3 [bar]	4 [bar]	5 [bar]	6 [bar]	7 [bar]	8 [bar]
190	25,8	35,8	45,1	54,3	63,9	73,4
180	28,2	38,4	48,2	58,5	68,8	78,3
170	30,0	41,2	51,7	62,3	73,5	83,5

Air springs type BZ 840 DS

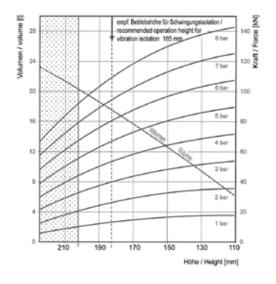

Between the top and lower plate a rubber bellow is crimped in order to create a hermetically sealed air volume. Hence the rubber bellow has very good dynamic characteristics as well as good chemical resistance. The mounting threads are positioned in the top and lower plates; the air connection hose thread is positioned in the top plate.

The types BZ 840 DS are equipped with internal bump stops.

Application: active vibration isolation:

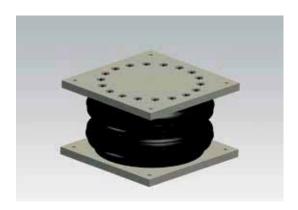
- · midding dynamic
- mounting plates
- engine test rig
- actuation test rig

BZ 840 DS



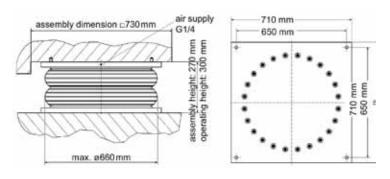
Weight: 149 kg
Restoring force for min. height: ≤ 89 N

Dynamic spring data for vibration isolation operating height incl. plates = 185 mm and $f_{err} = 1 \text{ Hz}$


Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency [Hz]
4	52,1	1053	2,2
6	79,0	1524	2,2
8	107,6	1985	2,2

Height [mm]	3 [bar]	4 [bar]	5 [bar]	6 [bar]	7 [bar]	8 [bar]
190	37,4	50,2	63,0	76,1	89,2	102,4
180	40,3	54,0	67,6	81,4	95,5	111,8
170	43,0	57,6	72,3	86,7	101,8	119,0

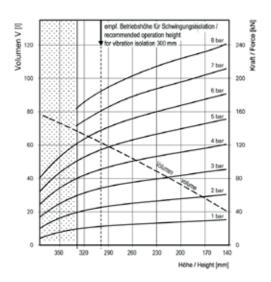
Double bellows cylinder



Air springs type DBZ

Between the top and lower plate two rubber bellows are crimped in order to create a hermetically sealed air volume. Hence the rubber bellow has very good dynamic characteristics as well as good chemical resistance. The mounting threads are positioned in the top and lower plates; the air connection hose thread is positioned in the top plate.

DBZ 1370



Weight: 250 kg
Restoring force for min. height: ≤ 445 N

Dynamic spring data for vibration isolation operating height incl. plates = 300 mm and f_{err} = 1 Hz

Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency [Hz]
4	90,5	905	1,6
6	137,6	1299	1,5
8	186,1	1695	1,5

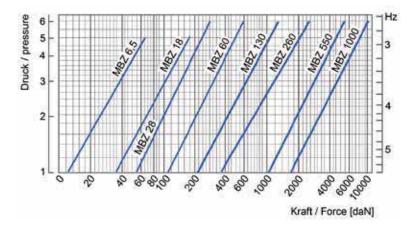
Height [mm]	3 [bar]	4 [bar]	5 [bar]	6 [bar]	7 [bar]	8 [bar]
300	68,0	90,7	113,9	137,2	160,5	184,0
260	74,8	100,3	125,8	151,3	179,0	202,8
220	81,4	108,4	135,8	163,3	190,7	218,2

MBZ 28

Air springs type MBZ

This air spring type is a rubber metal design with bolted lower plate. The air chamber consists of special rubber material reinforced through additional steel rings. The rubber component has a very high elasticity combined with very good oil resistance and very good anti-aging characteristics. The hose is the same valve type like at vehicle tires. According to height dimension and load the natural frequency of this component is between 3 Hz and 5 Hz. In case of airless mode the natural frequency is appr. 10 Hz. These air springs can be operated without level control system.

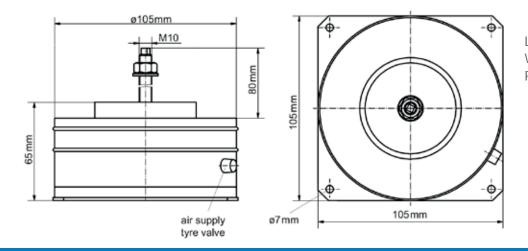
Application:


passive vibration isolation:

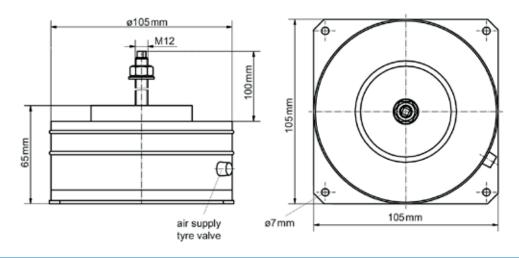
- metrological instruments
- electron microscopes
- measuring buildups

active vibration isolation:

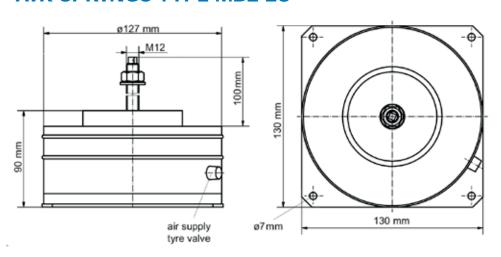
- compressors *
- ventilators *
- *= with low dynamic


AIR SPRINGS TYPE MBZ

Force-pressure-diagram MBZ

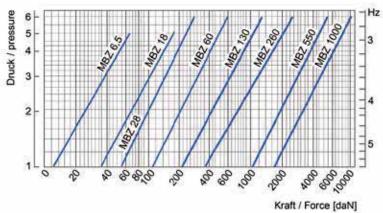


AIR SPRINGS TYPE MBZ 6,5

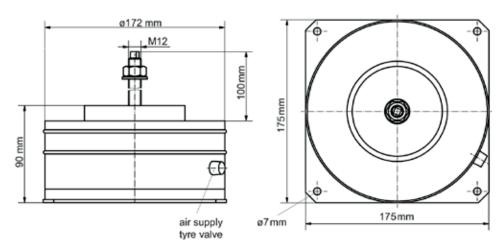

Load: 0,65 kN Weight: 0,3 kg Range: ± 5 mm

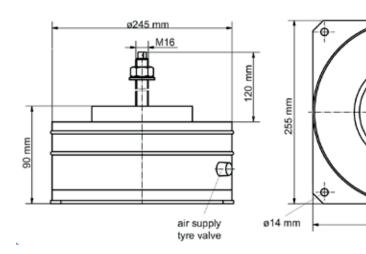
AIR SPRINGS TYPE MBZ 18


Load: 1,8 kN Weight: 0,7 kg Range: ± 5 mm


AIR SPRINGS TYPE MBZ 28

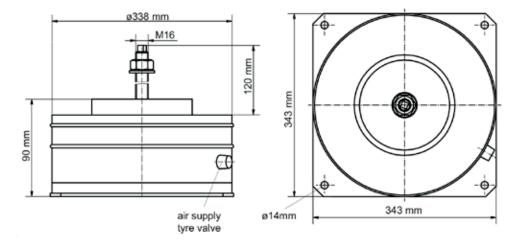
Load: 2,8 kN Weight: 1 kg Range: ± 6 mm



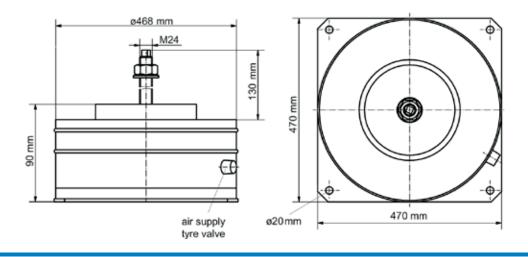

Force-pressure-diagram MBZ

255 mm

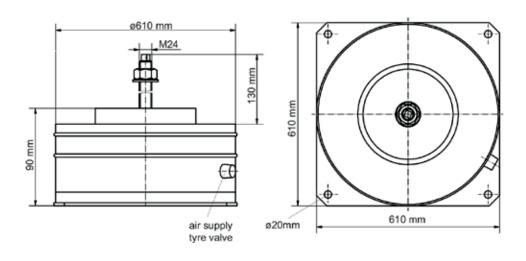
AIR SPRINGS TYPE MBZ 60


AIR SPRINGS TYPE MBZ 130

Load: 13 kN Weight: 5,4 kg Range: ±6 mm



AIR SPRINGS TYPE MBZ 260


Load: 26 kN Weight: 10,7 kg Range: ± 6 mm

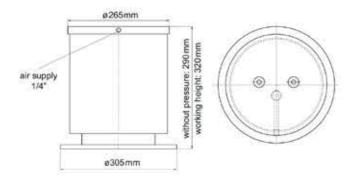
AIR SPRINGS TYPE MBZ 550

Load: 55 kN Weight: 29,1 kg Range: ± 6 mm

AIR SPRINGS TYPE MBZ 1000

Load: 100 kN Weight: 38,6 kg Range: ±6 mm

Air springs type RB ... SH

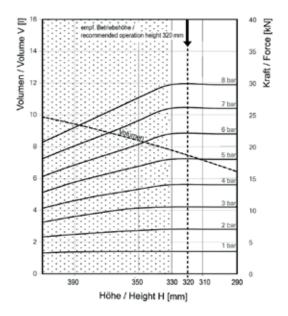

An elastomere bellow is fixed between a steel piston and the top plate from steel. The elastomere belt shows excellent dynamic properties and good resistance to chemicals. The air inlet is integrated into the top plate.

Furthermore the air spring is equipped with a support cap from steel and the according bottom plate. This construction realizes horizontal stability at minimum height.

Application: passive vibration isolation:

- high request degree of isolation
- low dynamic
- measurement-technology equipments
- electron microscopes
- lasertechnical rig
- measuring setups

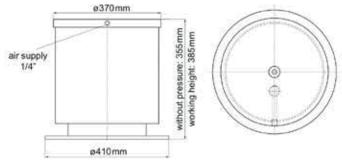
RB 220 SH

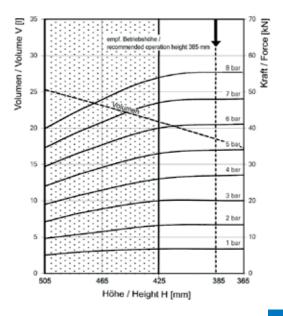


Weight: 31,5 kg
Restoring force for min. height: ≤ 3100 N
Range: 30 mm

Dynamic spring data for vibration isolation operating height = 320 mm and _{ferr} = 1 Hz

Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency [Hz]
4	14,0	123	1,5
6	22,0	192	1,5
8	29,7	245	1,5

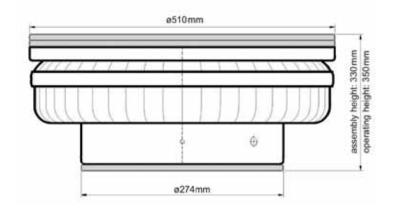

Height [mm]	3 [bar]	4 [bar]	5 [bar]	6 [bar]	7 [bar]	8 [bar]
330	10,5	14,0	18,0	22,0	26,0	29,7
300	10,5	14,0	18,0	22,0	26,0	29,7



Weight: 54 kg
Restoring force for min. height: ≤ 6200 N
Range: 30 mm

Dynamic spring data for vibration isolation operating height = 385 mm and ferr = 1 Hz

Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency [Hz]
4	26,5 152		1,2
6	40,5	242	1,2
8	54,2	318	1,2


Height [mm]	3 [bar]	4 [bar]	5 [bar]	6 [bar]	7 [bar]	8 [bar]
425	20	26	33	40	47	54
375	20	27	34	41	48	55

GRB 780

Air springs type GRB 780

A rolling rubber bellow is positioned between the top contact plate and the air spring pot. Due to this concept very low vertical and lateral stiffness are realised in order to get much more lower natural frequencies in comparison to other air types.

In combination with shiftable additional air volumes natural frequencies of well below 1Hz can be realized. Due to this functional concept high spring displacement is reached as well.

Hence this product is nearly perfectly designed to be used in a wide spectrum especially in case of high dynamically operated machines and test bench systems.

Furthermore in the discipline of passive bearing functionality (i.e. electron scanning microscope) the GRB air spring is an outstanding product.

Application:

- heavy seismic masses (>20 tons)
- systems with high dynamic

Weight: 28 kg
Volume: ca. 24 l
Air supply: 1/4"
Damping ratio vertical: 0,03
Recommended range: 23 mm

Dynamic spring data for vibration isolation

operating height incl. distance plates = 350 mm and $f_{\rm err}$ = 1 Hz

GRB 780 GRB 780 MD GRB 780 VD*		vertical		horizontal		
Pressure [bar]	Load [kN]	Stiff- ness* [N/mm]	Natural frequency* (dyn.) [Hz]	Stiff- ness* [N/mm]	Natural frequency* (dyn.) [Hz]	
3	39	470	1,8	210	1,2	
4	52	565	1,7	235	1,1	
5	65	655	1,6	250	1,0	
6	78	770	1,6	260	0,9	
7	91	860	1,6	263	0,9	
8	104	930	1,5	267	0,8	

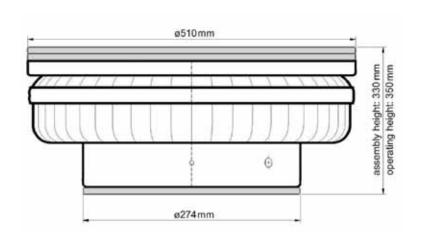
GRB 780 MD

Air springs type GRB 780 MD

Integrated air damping

with an integrated seperating plate the air volume is divided. By the throttle effect the damping is realised.

Cover plate and piston


are made from cast aluminium. Their sealing surfaces are machined, surface quality Rz 16. All other surfaces have been blasted.

Rolling lobe with belt

the rolling lobe is made from first class elastomer with a moulded wire-reinforced ring. It shows good vertical and lateral spring properties.

Application:

- heavy seismic masses (>20 tons)
- systems with high dynamic

Weight: 33 kg
Volume: ca. 24 l
Air supply: 1/4"
Dämpfungsmaß: 0,1
Recommended range: 18 mm

GRB 780 VD

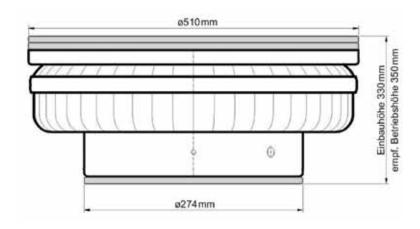
Air springs type GRB 780 VD

Integrated air damping

with an integrated seperating plate the air volume is divided. By the throttle effect the damping is realised.

Cover plate and piston

are made from cast aluminium. Their sealing surfaces are machined, surface quality Rz 16. All other surfaces have been blasted.

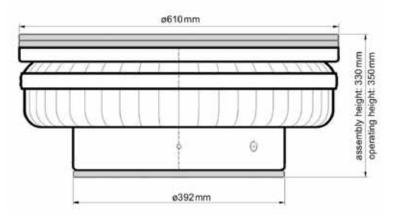

Rolling lobe with belt

the rolling lobe is made from first class elastomer with a moulded wire-reinforced ring. It shows good vertical and lateral spring properties.

Application:

- heavy seismic masses (>20 tons)
- · systems with high dynamic

* GRB 780 VD: Value for stiffness and natural frequency on request.



Weight: 32 kg
Volume: ca. 21 l
Air supply: 1/4"
Dämpfungsmaß: 0,15-0,25
Recommended range: 23 mm

GRB 1240

Air springs type GRB 1240

A rolling rubber bellow is positioned between the top contact plate and the air spring pot. Due to this concept very low vertical and lateral stiffness are realised in order to get much more lower natural frequencies in comparison to other air types.

In combination with shiftable additional air volumes natural frequencies of well below 1Hz can be realized. Due to this functional concept high spring displacement is reached as well.

Hence this product is nearly perfectly designed to be used in a wide spectrum especially in case of high dynamically operated machines and test bench systems.

Furthermore in the discipline of passive bearing functionality (i.e. electron scanning microscope) the GRB air spring is an outstanding product.

Application:

- heavy seismic masses (>30 tons)
- systems with high dynamic

Weight: 43 kg
Volume: ca. 40 l
Air supply: 1/4"
Damping ratio vertical: 0,03
Recommended range: 23 mm

Dynamic spring data for vibration isolation

operating height incl. distance plates = 350 mm and $\rm f_{\rm err}$ = 1 Hz

GRB 1240 GRB 1240 MD GRB 1240 VD*		vertical		horizontal	
Pressure [bar]	Load [kN]	Stiff- ness* [N/mm]	Natural frequency* (dyn.) [Hz]	Stiff- ness* [N/mm]	Natural frequency* (dyn.) [Hz]
[bar]	62	620	1,6	490	1,4
4	83	750	1,5	530	1,3
5	104	850	1,4	560	1,2
6	124	960	1,4	580	1,1
7	144	1045	1,4	610	1,1
8	165	1145	1,3	650	1,0

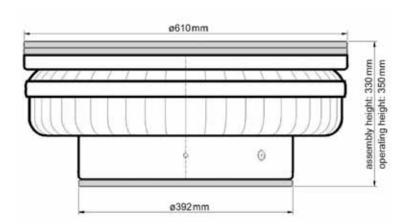
GRB 1240 MD

Air springs type GRB 1240 MD

Integrated air damping

with an integrated seperating plate the air volume is divided. By the throttle effect the damping is realised.

Cover plate and piston


are made from cast aluminium. Their sealing surfaces are machined, surface quality Rz 16. All other surfaces have been blasted.

Rolling lobe with belt

the rolling lobe is made from first class elastomer with a moulded wire-reinforced ring. It shows good vertical and lateral spring properties.

Application:

- heavy seismic masses (>30 tons)
- systems with high dynamic

Weight: 48 kg
Volume: ca. 40 l
Air supply: 1/4"
Damping ratio vertical: 0,1
Recommended range: 18 mm

GRB 1240 VD

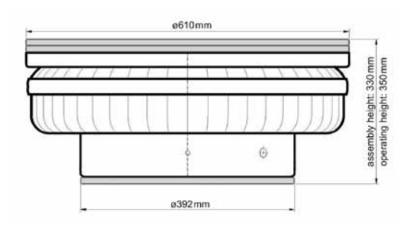
Air springs type GRB 1240 VD

Integrated air damping

with an integrated seperating plate the air volume is divided. By the throttle effect the damping is realised.

Cover plate and piston

are made from cast aluminium. Their sealing surfaces are machined, surface quality Rz 16. All other surfaces have been blasted.

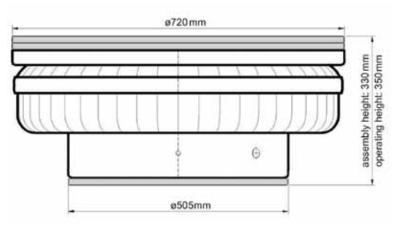

Rolling lobe with belt

the rolling lobe is made from first class elastomer with a moulded wire-reinforced ring. It shows good vertical and lateral spring properties.

Application:

- heavy seismic masses (>30 tons)
- · systems with high dynamic

* GRB 1240 VD: Value for stiffness and natural frequency on request.



Weight: 50 kg
Volume: ca. 34 l
Air supply: 1/4"
Damping ratio vertical: 0,15-0,25
Recommended range: 23 mm

GRB 1820

Air springs type GRB 1820

A rolling rubber bellow is positioned between the top contact plate and the air spring pot. Due to this concept very low vertical and lateral stiffness are realised in order to get much more lower natural frequencies in comparison to other air types.

In combination with shiftable additional air volumes natural frequencies of well below 1Hz can be realized. Due to this functional concept high spring displacement is reached as well.

Hence this product is nearly perfectly designed to be used in a wide spectrum especially in case of high dynamically operated machines and test bench systems.

Furthermore in the discipline of passive bearing functionality (i.e. electron scanning microscope) the GRB air spring is an outstanding product.

Application:

- heavy seismic masses (>45 tons)
- systems with high dynamic

Weight: 62 kg
Volume: ca. 66 l
Air supply: 1/4"
Damping ratio vertical: 0,03
Recommended range: 23 mm

Dynamic spring data for vibration isolation

operating height incl. distance plates = 350 mm and $f_{\rm err}$ = 1 Hz

GRB 1820 GRB 1820 MD GRB 1820 VD*		vertical		horizontal	
Pressure [bar]	Load [kN]	Stiff- ness* [N/mm]	Natural frequency* (dyn.) [Hz]	Stiff- ness* [N/mm]	Natural frequency* (dyn.) [Hz]
3	92	820	1,5	500	1,2
4	122	990	1,4	630	1,2
5	153	1150	1,4	730	1,1
6	182	1270	1,3	790	1,1
7	214	1400	1,3	830	1,0
8	244	1530	1,3	870	1,0

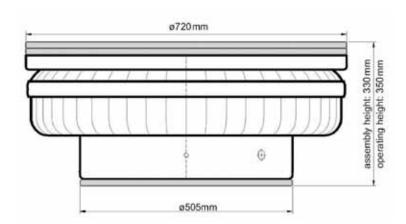
GRB 1820 MD

Air springs type GRB 1820 MD

Integrated air damping

with an integrated seperating plate the air volume is divided. By the throttle effect the damping is realised.

Cover plate and piston


are made from cast aluminium. Their sealing surfaces are machined, surface quality Rz 16. All other surfaces have been blasted.

Rolling lobe with belt

the rolling lobe is made from first class elastomer with a moulded wire-reinforced ring. It shows good vertical and lateral spring properties.

Application:

- heavy seismic masses (>45 tons)
- systems with high dynamic

Weight: 67 kg
Volume: ca. 66 l
Air supply: 1/4"
Damping ratio vertical: 0,1
Recommended range: 18 mm

GRB 1820 VD

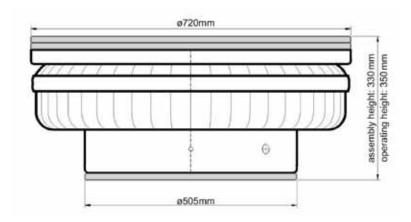
Air springs type GRB 1820 VD

Integrated air damping

with an integrated seperating plate the air volume is divided. By the throttle effect the damping is realised.

Cover plate and piston

are made from cast aluminium. Their sealing surfaces are machined, surface quality Rz 16. All other surfaces have been blasted.

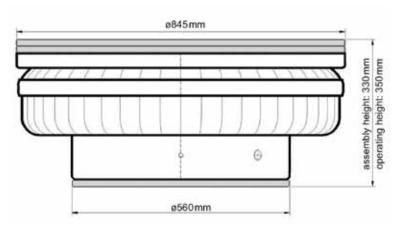

Rolling lobe with belt

the rolling lobe is made from first class elastomer with a moulded wire-reinforced ring. It shows good vertical and lateral spring properties.

Application:

- heavy seismic masses (>45 tons)
- · systems with high dynamic

* GRB 1820 VD: Value for stiffness and natural frequency on request.



Weight: 74 kg
Volume: ca. 54 l
Air supply: 1/4"
Damping ratio vertical: 0,15-0,25
Recommended range: 23 mm

GRB 2480

Air springs type GRB 2480

A rolling rubber bellow is positioned between the top contact plate and the air spring pot. Due to this concept very low vertical and lateral stiffness are realised in order to get much more lower natural frequencies in comparison to other air types.

In combination with shiftable additional air volumes natural frequencies of well below 1Hz can be realized.

Due to this functional concept high spring displacement is reached as well.

Hence this product is nearly perfectly designed to be used in a wide spectrum especially in case of high dynamically operated machines and test bench systems.

Furthermore in the discipline of passive bearing functionality (i.e. electron scanning microscope) the GRB air spring is an outstanding product.

Application:

- heavy seismic masses (>65 tons)
- systems with high dynamic

Weight: 84 kg
Volume: ca. 83 l
Air supply: 1/4"
Damping ratio vertical: 0,03
Recommended range: 23 mm

Dynamic spring data for vibration isolation

operating height incl. distance plates = 350 mm and $f_{\rm err}$ = 1 Hz

GRB 2480 GRB 2480 MD GRB 2480 VD*		vertical		horizontal	
Pressure [bar]	Load [kN]	Stiff- ness* [N/mm]	Natural frequency* (dyn.) [Hz]	Stiff- ness* [N/mm]	Natural frequency* (dyn.) [Hz]
3	125	1170	1,6	450	1,0
4	165	1440	1,5	480	0,9
5	205	1730	1,5	490	0,8
6	248	1960	1,4	500	0,7
7	287	2180	1,4	505	0,7
8	329	2420	1,4	510	0,6

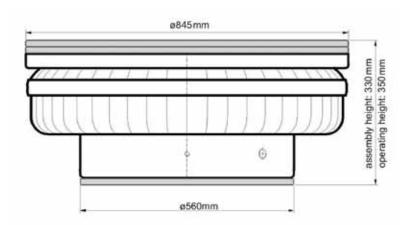
GRB 2480 MD

Air springs type GRB 2480 MD

Integrated air damping

with an integrated seperating plate the air volume is divided. By the throttle effect the damping is realised.

Cover plate and piston


are made from cast aluminium. Their sealing surfaces are machined, surface quality Rz 16. All other surfaces have been blasted.

Rolling lobe with belt

the rolling lobe is made from first class elastomer with a moulded wire-reinforced ring. It shows good vertical and lateral spring properties.

Application:

- heavy seismic masses (>65 tons)
- systems with high dynamic

Weight: 89 kg
Volume: ca. 83 l
Air supply: 1/4"
Damping ratio vertical: 0,1
Recommended range: 18 mm

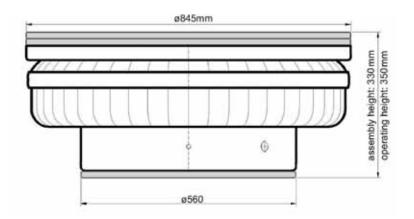
GRB 2480 VD

Air springs type GRB 2480 VD

Integrated air damping

with an integrated seperating plate the air volume is divided. By the throttle effect the damping is realised.

Cover plate and piston

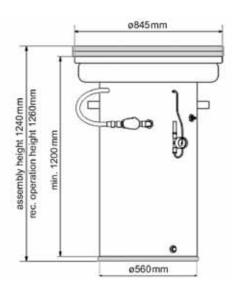

are made from cast aluminium. Their sealing surfaces are machined, surface quality Rz 16. All other surfaces have been blasted.

Rolling lobe with belt

the rolling lobe is made from first class elastomer with a moulded wire-reinforced ring. It shows good vertical and lateral spring properties.

Application:

- heavy seismic masses (>65 tons)
- systems with high dynamic


Weight: 100 kg
Volume: ca. 67 l
Air supply: 1/4"
Damping ratio vertical: 0,15-0,25
Recommended range: 23 mm

^{*} GRB 2480 VD: Value for stiffness and natural frequency on request.

GRB 2480-1200 ZV

Weight: 340 kg
Volume: ca. 278 l
Air supply: 1/4"
Recommended range: 23 mm
Damping ratio vertical: on request

Air springs type GRB 2480-1200 ZV

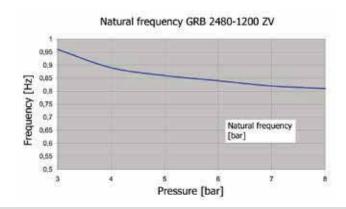
GRB 2480-1200 ZV is an air spring with integrated additional volume with the option to switch it on or off.

The cover plate is made of cast aluminium and piston is made of steel. Their sealing surfaces are machined, surface quality Rz 16. All other surfaces have been blasted.

The rolling lobe is made from first class elastomer with a moulded wire-reinforced ring. It shows good vertical and lateral spring properties.

Advantages over conventional air springs are:

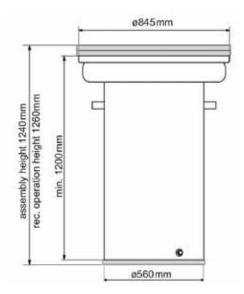
- At T-shaped foundations shoulders are not necessary
- Less required space, because of the integrated additional volume.


Application:

- Large foundations (>65 tons)
- Systems with higher dynamics

Dynamic spring data for vibration isolation

operating height incl. distance plates= 1260 mm und f_{err} = 1 Hz


Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency (dyn.) [Hz]
3	125	394	0,96
4	165	471	0,89
5	205	549	0,86
6	248	632	0,84
7	287	715	0,82
8	329	790	0,81

Weight: 329 kg
Volume: ca. 278 l
Air supply: 1/4"
Recommended range: 23 mm
Damping ratio vertical: on request

Air springs type GRB 2480-1200 ZV-AV

GRB 2480-1200 ZV-AV is an air spring with integrated additional volume.

The cover plate is made of cast aluminium and piston is made of steel. Their sealing surfaces are machined, surface quality Rz 16. All other surfaces have been blasted.

The rolling lobe is made from first class elastomer with a moulded wire-reinforced ring. It shows good vertical and lateral spring properties.

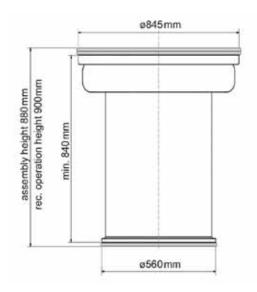
Advantages over conventional air springs are:

- At T-shaped foundations shoulders are not necessary
- Less required space, because of the integrated additional volume.

Application:

- Large foundations (>65 tons)
- Systems with higher dynamics

Dynamic spring data for vibration isolation


operating height incl. distance plates = 1260 mm und $f_{err} = 1 \text{ Hz}$

Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency (dyn.) [Hz]
3	125	394	0,96
4	165	471	0,89
5	205	549	0,86
6	248	632	0,84
7	287	715	0,82
8	329	790	0,81

GRB 2480-840

Weight: 245 kg
Volume: ca. 196 l
Air supply: 1/4"
Recommended range: 23 mm
Damping ratio vertical: on request

Air springs type GRB 2480-840

GRB 2480-840 is an air spring with integrated additional volume.

The cover plate is made of cast aluminium and piston is made of steel. Their sealing surfaces are machined, surface quality Rz 16. All other surfaces have been blasted.

The rolling lobe is made from first class elastomer with a moulded wire-reinforced ring. It shows good vertical and lateral spring properties.

Advantages over conventional air springs are:

- At T-shaped foundations shoulders are not necessary
- Less required space, because of the integrated additional volume.

Application:

- Large foundations (>65 tons)
- Systems with higher dynamics

Dynamic spring data for vibration isolation

operating height incl. distance plate = 900 mm and f_{err} = 1 Hz

Pressure [bar]	Load [kN]	Stiffness [N/mm]	Natural frequency (dyn.) [Hz]
3	125	604	1,11
4	165	688	1,03
5	205	807	1,00
6	248	888	0,95
7	287	998	0,94

Personal notes

HEADQUARTER:

Germany

CFM Schiller GmbH | Vennstr. 8 | 52159 Roetgen | Germany

Phone: +49.2471.1246-0 | Fax: +49.2471.1246-20 | info@cfm-schiller.de | www.cfm-schiller.de

SALES OFFICES:

Belgium | the Netherlands | Luxemburg

AKRON n .v.-s.a. | J. Vandenbemptlaan 71 | 3001 Heverlee | Belgium

Phone: +32.16.230103 | Mobile: +32.473.510065 | Fax: +32.16.232696 | philippe.zwaenepoel@akron.be | www.akron.be

SIGNALWORKS

Brasil

Signalworks Comércio | Importação & Exportação Ltda. | Rua Luigi Galvani, 146-1º andar

CEP: 04575-020 Brooklin Novo | São Paulo, SP

Phone: +55.11.55015316 | Mobile: +55.11.68501479 | Fax: +55.11.55055682 | www.signalworks.com.br

China

CFM Schiller China | Caoan Road 4260 | Anting, Jiading, Shanghai

Phone: +86.10.15800781895 | www.cfm-schiller.de | info@cfm-schiller.de

Germany

Sales North | Veronika Runzer | Fritz-Reuter-Weg 40 | 38640 Goslar

Phone: +49.5321.6850868 | Mobile: +49.173.2132483 | Fax: +49.5321.6850869 | veronika.runzer@cfm-schiller.de

Germany | Austria | Switzerland

Sales South | Alexandra Wierzba | Vennstr. 8 | 52159 Roetgen Mobile: +49.151.54442131 | alexandra.wierzba@cfm-schiller.de

France

CFM Schiller France | Gérard Lacazette | 5 rue Antonio Vivaldi | 78590 Noisy le Roi

Phone: +33.9.81.035045 | Mobile: +33.6.68.205050 | Fax: +33.1.30.565045 | gerard.lacazette@cfm-schiller.de

Great Britain

PES (UK) Limited | Unit 1 Watling Close | Sketchley Meadows Business Park | Hinckley, Leicester, LE10 3EZ Phone: +44.1455.251251 | Fax: +44.1455.251252 | sales@pesukltd.com | www.pesukltd.com

India

CFM Schiller India Engineering Pvt Ltd. | Sandeep Vidwans | Flat No 201, "Kalpataru" Apartments

Survey No. 1/11 + 1/23 | Karvenagar Pinac Colony, Pune 411052 | Maharashtra

Phone: +91.96899.21575 | sandeep.vidwans@cfm-schiller.de

México

GRUPO CTT S.A. DE CV | Ing. Hernan Barrios C. | Hamburgo 102 | Residencial del Valle 1 Aguascalientes, AGS | CP. 20080 | Phone: +52.449.922.9200 | www.grupoctt.com.mx

Poland

Elhys Sp. z o.o. | Michal Jablonski | ul. Naukowa 45 | 02-463 Warszawa

Phone: +48.22.8633049 | Fax: +48.22.8639119 | mja@elhys.com.pl | www.elhys.com.pl

Spain

SEM, SA | Moscou 30, 1-1 | 08005 Barcelona

Phone: +34.93.2210065 | Fax: +34.93.2210249 | info@semsa.es | www.semsa.es

Γurkev

Vibration Isolation Systems for electrodynamic shakers | Barbaros Mah. Başkan Sok. | No: 23 / 1-2 | 34662 Üsküdar, Istanbul Phone: +90.216.6510700 | Fax: +90.216.6510714 | www.starteknik.com.tr

Turkey

Test Rig Components | Uzunçayır Caddesi No: 33 | A Blok K:3 D:18-19-20 | 34722 Hasanpaşa | Kadıköy, Istanbul Phone: +90.216.3264535 (4H Pbx) | Fax: +90.216.3263286 | megaist@megatr.com | www.megadanismanlik.com.tr

IICA

CFM-ITBona LLC | 4282 Shoreline Drive | Spring Park | MN 55384

Phone: +1.952.9426104 | Fax: +1.952.9426106 | contact@cfm-itbona.com | www.cfm-itbona.com

CFM Schiller GmbH | Special machine construction, specialized in vibration isolation and test bench systems Managing director: Dipl.-Ing. Wolfgang Peters | approx. 120 employees

Print: CFM Digitaldruck | digitaldruck@cfm-schiller.de | www.cfm-digitaldruck.de

Subject to errors, printing errors and technical modifications. All earlier editions are invalid.